
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Technical Report ISSN 1618 – 7776

Analysing fMRI experiments with the fmri

package in R.

Version 1.0 - A users guide.

Jörg Polzehl1 , Karsten Tabelow 1 2

submitted: June 27, 2006

1 Weierstrass Institute

for Applied Analysis and Stochastics,

Mohrenstr. 39, 10117

Berlin, Germany

E-Mail: polzehl@wias-berlin.de

E-Mail: tabelow@wias-berlin.de

No. 10

Berlin 2006

W I A S

2Supported by the DFG Research Center Matheon ”Mathematics for key technologies” in Berlin

2000 Mathematics Subject Classification. 62G05.

Key words and phrases. adaptive weights; local structure; local polynomial regression, propagation, separation.

Edited by

Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraße 39

10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/

Contents

1 Analysing fMRI data with the fmri package 2

2 Reading the data 3

read.AFNI . 4

read.ANALYZE . 5

3 Create the expected BOLD response and design matrix 7

fmri.stimulus . 7

fmri.design . 9

4 Estimation of parameters in the linear model 10

fmri.lm . 13

5 Structure Adaptive Smoothing 16

fmri.smooth . 17

6 Signal detection 18

fmri.pvalue . 20

7 Plot the results 21

plot.fmridata . 22

print.fmridata . 23

summary.fmridata . 24

8 Writing the results to files 25

write.AFNI . 26

write.ANALYZE . 27

1

Abstract

This document describes the usage of the R package fmri to analyse functional Magnetic

Resonance Imaging (fMRI) data with structure adaptive smoothing procedures (Propagation-

Separation (PS) approach) as described in [7].

1 Analysing fMRI data with the fmri package

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive tool for studying the function-

ality of the brain and localizing cognitive functions. It has become increasingly important in

neurosciences as well as for clinical applications such as presurgical planning. In a typical fMRI

experiment with block design the patient has to perform one or several tasks alternated by some pe-

riod of rest. However, activation in brain is not subject to direct measurement. fMRI-experiments

therefore detect a change in blood oxygenation (BOLD response) [3, 4] instead. A higher oxygena-

tion level is associated with increased neuronal activity necessary to solve the task.

The fmri package was build to provide an easy-to-use interface for the analysis of fMRI data.

The approach is based on a linear model for the hemodynamic response according to the Blood

Oxygen Level Dependent (BOLD) effect and structural adaptive spatial smoothing of the resulting

Statistical Parametric Map (SPM). The package requires R (version ≥ 2.2) [6] (binaries available

for Linux and Windows) to be installed. 3D visualization needs the R-package tkrplot.

Sections marked with a ? are not required in order to understand how to write an R-script based

on the package and can thus be dropped at first reading. However, they contain information on

the implementation of the algorithm if this is not straightforward.

The statistical modelling implemented with this software is described in [7].

NOTE! This software comes with absolutely no warranty! It is not intended for

clinical use, but for research purposes only. Absence of bugs can not be guaranteed!

We first start with a basic script for using the fmri package in a typical fmri analysis. In the follow-

ing sections of this manual we describe the consecutive steps of the analysis. This is accompanied

by a complete documentation of the user-level functions of the package (also available through R’s

help system).

load the package

library(fmri)

read the data

data <- read.AFNI("afnifile")

or read sequence of ANALYZE files

analyze031file.hdr ... analyze137file.hdr

data <- read.ANALYZE("analyze", numbered=TRUE, "file", 31, 107)

2

create expected BOLD signal and design matrix

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

x <- fmri.design(hrf)

generate parametric map from linear model

spm <- fmri.lm(data, x)

structure adaptive smoothing with maximum bandwith hmax

spmsmooth <- fmri.smooth(spm, hmax=hmax)

calculate p-values for smoothed parametric map

pvalue <- fmri.pvalue(spmsmooth)

plot result slicewise into file or ...

plot(pvalue, maxpvalue=0.01, device="jpeg", file="result.jpeg")

... plot interactive 3D visualization

plot(pvalue, maxpvalue=0.01, type="3d")

2 Reading the data

The fmri package can read AFNI-HEAD/BRIK [2] and ANALYZE [1] files. Use

data <- read.AFNI(<filename>)

data <- read.ANALYZE(<filename>)

to simply read the data in the file <filename> into the object data. Drop the extension in

<filename>. While AFNI data is generally given as a four dimensional datacube in one file,

ANALYZE format data often comes in a series of numbered files. The syntax to read them is as

follows:

data <- read.ANALYZE(prefix = "", numbered = TRUE,

postfix = "", picstart = 1, numbpic = 1)

Setting the numbered argument to TRUE starts reading a list of files. prefix contains the string be-

fore the number, whereas postfix contains the string after the number in the filename. picstart is the

number of the first file, and numbpic the number of files to be read. Note, that read.ANALYZE()

requires the file names in the form:

<prefix>007<postfix>.hdr/img

It may well be that your scanner does not match this convention. If so, you have the possibility

to combine the files into a four dimensional data cube with some third-party software first or ask

3

the authors of this package to include more conventions into the package.

Both functions return lists of class ”fmridata” with list elements corresponding to the datacube

(’ttt’), basic information on the data (’dim’, ’delta’ etc.), as well as the complete header information

(’header’), which is itself a list with elements corresponding to the data format read. A head mask

is defined by simply considering a 75% quantile of the data grey levels as cut-off. This will only

be used to provide improved spatial correlation estimates for the head in fmri.lm().

read.AFNI I/O function

Description

Read HEAD/BRIK file.

Usage

read.AFNI(file)

Arguments

file name of the file (without extension)

Details

The function reads a HEAD/BRIK file.

Value

Object of class ”fmridata” with the following list entries:

ttt 4 dimensional datacube, the first three dimensions are voxel dimensions, the

fourth dimension denotes the time

header header information list

format data source. string ”HEAD/BRIK”

delta voxel size in mm

origin position of the datacube origin

orient data orientation code. see AFNI documentation

dim dimension of the datacube

weights weights vector coding the relative voxel sizes in x, y, z-direction.

mask head mask

4

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

References

R. W. Cox (1996). AFNI: Software for analysis and visualization of functional magnetic

resonance neuroimages. Computers and Biomed. Res. 29:162-173.

See Also

write.AFNI, read.ANALYZE

Examples

Not run: afni <- read.AFNI("afnifile")

read.ANALYZE I/O Functions

Description

Read fMRI data from ANALYZE file(s).

Usage

read.ANALYZE(prefix = "", numbered = FALSE, postfix = "",

picstart = 1, numbpic = 1)

Arguments

prefix string. part of the file name before the number

numbered logical. if FALSE only prefix is taken as file name (default).

postfix string. part of the file name after the number

picstart number of the first image to be read.

numbpic number of images to be read

5

Details

This function reads fMRI data files in ANALYZE format. It takes the strings in prefix and

postfix and a number of the form ”007” in between to create the file name.

If numbered is FALSE, only the string in prefix is used for file name (default).

The number is assumed to be 3 digits (including leading zeros). First number is given in

picstart, while numbpic defines the total number of images to be read. Data in multiple files

will be combined into a four dimensional datacube.

Value

Object of class ”fmridata” with the following list entries:

ttt four dimensional data cube, the first three dimensions are voxel dimensions,

the fourth dimension denotes the time

header header information of the data

format data source. string ”ANALYZE”

delta voxel size in mm

origin position of the datacube origin

orient data orientation code

dim dimension of the datacube

weights weights vector coding the relative voxel sizes in x, y, z-direction

mask head mask

Note

Since numbering and naming of ANALYZE files widely vary, this function may not meet your

personal needs. See Details section above for a description.

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

References

Biomedical Imaging Resource (2001). Analyze Program. Mayo Foundation.

See Also

write.ANALYZE, read.AFNI

6

Examples

Not run: analyze <- read.ANALYZE("analyze",TRUE,"file",31,107)

3 Create the expected BOLD response and design matrix

The creation of the design includes the creation of the expected BOLD response due to experimental

stimuli. For the hemodynamic response function h(t) the difference of two gamma functions is used:

h(t) =

(

t

d1

)a1

exp

(

−
t − d1

b1

)

− c

(

t

d2

)a2

exp

(

−
t − d2

b2

)

with a1 = 6, a2 = 12, b1 = 0.9, b2 = 0.9, and di = aibi(i = 1, 2), c = 0.35 where t is the time in

seconds. The expected BOLD response is given as a discrete convolution of this function with the

task indicator function. No sub-sampling is done. Use

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

to create a stimulus with 107 scans, onset times at the 18th, 48th, and 78th scan with a duration

of the stimulus of 15 scans, and a time TR = 2s between two scans. Create as much stimuli as

you need (pay attention that the number of scans is equal in all of them). Once finished with this,

create a design matrix:

x <- fmri.design(hrf)

This will include polynomial drift terms up to quadratic order. If you want to deviate from this

default, add a second argument with the order of the polynomial drift you want to specify. Use

cbind() to combine several stimulus vectors into a matrix of stimuli before calling fmri.design().

The design matrix specifies the linear model used to construct the SPM.

The hemodynamic response function may have an unknown latency [11]. To model this effect

one can create an additional explanatory variable from the first derivative of any experimental

stimulus:

dhrf <- (c(0,diff(hrf)) + c(diff(hrf),0))/2

See the next section for how to include this into the linear model.

fmri.stimulus Linear Model for FMRI Data

Description

Create the expected BOLD response for a given task indicator function.

7

Usage

fmri.stimulus(scans = 1, onsets = c(1), length = 1, rt = 3,

mean = TRUE,

a1 = 6, a2 = 12, b1 = 0.9, b2 = 0.9, cc = 0.35)

Arguments

scans number of scans

onsets vector of onset times (in scans)

length length of ON stimulus (in scans)

rt time between scans in seconds (TR)

mean logical. if TRUE the mean is substracted from the resulting vector

a1 parameter of the hemodynamic response function (see details)

a2 parameter of the hemodynamic response function (see details)

b1 parameter of the hemodynamic response function (see details)

b2 parameter of the hemodynamic response function (see details)

cc parameter of the hemodynamic response function (see details)

Details

The functions calculates the expected BOLD response for the task indicator function given

by the argument as a convolution with the hemodynamic response function. The latter is

modelled by the difference between two gamma functions as given in the reference (with the

defaults for a1, a2, b1, b2, cc given therein):

(

t

d1

)a1

exp

(

−
t − d1

b1

)

− c

(

t

d2

)a2

exp

(

−
t − d2

b2

)

The parameters of this function can be changed through the arguments a1, a2, b1, b2, cc.

The dimension of the function value is set to c(scans,1).

If mean is TRUE (default) the resulting vector is corrected to have zero mean.

Value

Vector with dimension c(scans,1).

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

8

References

Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C. (2002).

A general statistical analysis for fMRI data. NeuroImage, 15:1-15.

See Also

fmri.design, fmri.lm

Examples

Example 1

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

z <- fmri.design(hrf,2)

par(mfrow=c(2,2))

for (i in 1:4) plot(z[,i],type="l")

fmri.design Linear Model for FMRI Data

Description

Return a design matrix for a linear model with given stimuli and possible polynomial drift

terms.

Usage

fmri.design(hrf, order = 2)

Arguments

hrf matrix containing expected BOLD repsonse(s) for the linear model as columns

order order of the polynomial drift terms

Details

The stimuli given in hrf are used as first columns in the design matrix.

The order of the polynomial drift terms is given by order, which defaults to 2.

The polynomials are defined orthogonal to the stimuli given in hrf.

9

Value

design matrix of the linear model

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

See Also

fmri.stimulus, fmri.lm

Examples

Example 1

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

z <- fmri.design(hrf,2)

par(mfrow=c(2,2))

for (i in 1:4) plot(z[,i],type="l")

4 Estimation of parameters in the linear model

We adopt the common view of a linear model for the time series Yi = (Yit) in each voxel i after

reconstruction of the raw data and motion correction.

Yi = Xβi + εi, (1)

where X denotes the design matrix. The first q columns of X contain values of the expected BOLD

response for the different stimuli evaluated at scan acquisition times. The other p− q columns are

chosen to be orthogonal to the expected BOLD responses and to account for a slowly varying drift

and possible other external effects. The error vector εi has zero expectation and is assumed to be

correlated in time. In order to access the variability of the estimates of βi correctly we have to take

the correlation structure of the error vector εi into account. Here we assume an AR(1) model to

be sufficient for commonly used MRI scanners. The autocorrelation coefficients ρi are estimated

from the residual vector ri = (ri1, . . . , riT) of the fitted model (1) as

ρ̄i =

T
∑

t=2

ritri(t−1)/

T
∑

t=1

r2
it.

This estimate of the correlation coefficient is biased due to fitting the linear model (1). We therefore

apply the bias correction given by [9] leading to an estimate ρ̃i.

We then use prewhitening to transform model (1) into a linear model with approximately uncorre-

lated errors. The prewhitened linear model is obtained by multiplying the terms in (1) with some

10

matrix Ai depending on ρ̃i. The prewhitening procedure thus results in a new linear model

Ỹi = X̃iβi + ε̃i (2)

with Ỹi = AiYi, X̃i = AiX , and ε̃i = Aiεi. In the new model the errors ε̃i = (ε̃it) are approximately

uncorrelated in time t, such that Var εi = σ2
i IT . Finally least squares estimates β̃i are obtained

from model (2) as

β̃ = (X̃T X̃)−1X̃T Ỹ .

The error variance σ2
i is estimated from the residuals r̃i of the linear model (2) as σ̃2

i =
∑T

1 r̃2
it/(T−

p) leading to estimated covariance matrices

Var β̃ = σ̃2(X̃T X̃)−1.

This is, in the simplest case, done by

spm <- fmri.lm(data, x)

where data is the data object read by read.AFNI() or read.ANALYZE(), and x is the design matrix

created with fmri.design().

To consider more than one stimulus and to estimate an effect

γ̃ = cT β̃

defined by a vector of contrasts c set the argument contrast of the function fmri.lm() correspond-

ingly:

hrf1 <- fmri.stimulus(214, c(18, 78, 138), 15, 2)

hrf2 <- fmri.stimulus(214, c(48, 108, 168), 15, 2)

x <- fmri.design(cbind(hrf1, hrf2))

spm1 <- fmri.lm(data, x, contrast = c(1,0)) # stimulus 1 only

spm2 <- fmri.lm(data, x, contrast = c(0,1)) # stimulus 2 only

spm3 <- fmri.lm(data, x, contrast = c(1,-1)) # contrast between both

If the argument ”vvector” is set, the list element ”cbeta” of the fmri.lm() value contains a vector

with the parameters corresponding to the non-zero elements in ”vvector” in each voxel. This may

be used to include unknown latency of the hemodynamic response function into the analysis. First

define the expected BOLD response for a given stimulus and its derivative and then combine them

into the design matrix:

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

dhrf <- (c(0,diff(hrf)) + c(diff(hrf),0))/2

x <- fmri.design(cbind(hrf, dhrf))

spm <- fmri.lm(data, x, vvector = c(1,1))

11

The specification of vvector in the last statement results in a vector of length 2 containing the two

parameter estimates for the expected BOLD response and its derivative in each voxel. Furthermore

an estimate of the ratio of the variances of these parameters is calculated and used for smoothing.

See fmri.smooth() for details about smoothing this parametric map. Do not mix with the contrast

argument described above since unexpected side-effects may occur.

The function returns an object with class attributes ”fmridata” and ”fmrispm”. This is again a list

with elements that contain the estimated parameter contrast (’cbeta’), and its estimated variance

(’var’), as well as estimated spatial correlations in all directions (see documentation of the function

fmri.lm for details).

Algorithm?

This section describes the implementation of the function in more detail.

Estimation of the parameters β and its variance in the linear model (1) is given by

β̂ = (XT X)−1XT Y = BY

and

Var β̂ = σ2(XT X)−1.

We use the singular value decomposition of the design matrix X = UΛV T to calculate the esti-

mates. Thus:

B = V Λ−2UT

and therefore we have

β̂ = V Λ−2UT Y

Var β̂ = σ2V Λ−2V T

We now calculate the residuals ri of the model for each voxel i as

r = Y − Xβ

The errors ε in the linear model are correlated in time. We use an AR(1) model here, and estimate

its parameter ρi at voxel i with bias reduction according to [9]. Therefore

ρ̃i =
v1

v0

with

v = M−1a

and

a =

(

a0

a1

)

, M =

(

m00 m01

m10 m11

)

12

and finally

al =

T
∑

t=l+1

ritrit−l

and

mlj =

{

tr(RDl) j = 0,

tr(RDlR(Dj + DT
j)) j = 1

where Dl is a matrix of zeros with ones on the lth upper off-diagonal.

With the map of autocorrelation coefficients ρ̃i at hand we perform the prewhitening. We have for

the variance of ε:

Var ε = σ2



















1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 · · · ρ1



















We now consider the Choleski decomposition of this correlation matrix:

Var ε = σ2SST

If we choose A = S−1 we find (assuming Eε = 0)

Var (Aε) = AVar εAT = σ2I

Thus Aε are uncorrelated. A plug-in estimate with ρ replaced by ρ̃i is used for prewithening.

The fmri.lm() function provides the possibility to neglect prewhitening as well as to smooth the

map of autocorrelation parameters ρ, with a bandwidth FWHMfilter to achieve a target degree of

freedom df for the random t-field given by the parameter estimate divided by its estimated standard

deviation [8]. This is controlled by the argument ”actype” (see documentation for details).

However, since the fmri package performs data smoothing on the map of estimated parameters

rather than on the original data, we achieve a sufficiently high number of degrees of freedom for

the resulting random field to be gaussian through the smoothing of the SPM [7]. It therefore is not

necessary to smooth the autocorrelation coefficients. However, we provide this possibility, if one

wants to apply the package for spatially smoothed data, without using adaptive weights smoothing

for the statistical parameter map.

fmri.lm Linear Model For FMRI Data

Description

Estimate the parameters and variances in a linear model.

13

Usage

fmri.lm(data, z, actype = "accalc", hmax = 3.52, vtype = "var",

step = 0.01, contrast = c(1), vvector = c(1),

keep = "essential")

Arguments

data object of class ”fmridata”

z designmatrix specifying the expected BOLD response(s) and additional com-

ponents for trend and other effects.

actype string describing the type of handling autocorrelation of time series. ”nonac”,

”ac”, ”accalc”, ”smooth”

hmax bandwidth for smoothing autocorrelation parameter if actype = ”smooth”

vtype method of estimating residual variance (only ”var” implemented)

step step size for binning autocorrelations (see details)

contrast contrast vector

vvector vector defining the parameters for which the covariance matrix is returned

as well as the corresponding length of the vector cbeta in each voxel

keep string describing the amount of data returned: ”essential”, ”diagnostic”,

”all”

Details

This function performs parameter estimation in the linear model. It implements a two step

procedure. After primary estimation of the parameters in the first step residuals are ob-

tained. If actype %in% c("ac", "accalc", "smooth") an AR(1) model is fitted, in each

voxel, to the time series of residuals. The estimated AR-coefficient is corrected for bias.

If actype=="smooth" the estimated AR-coefficients are spatially smoothed using bandwidth

hmax. If actype %in% c("ac", "smooth") the linear model is prewithened using the esti-

mated (smoothed) AR-coefficients. Parameter and variance estimates are then obtained from

the prewithened data. The argument keep describes the amount of data which is returned. If

”essential” only the estimated effects

γ̃i = CT β̃i

and their estimated variances are returned. ”all” gives the full data, including residuals,

temporal autocorrelation. If vvector is given and has length greater than 1, the covariance

matrix for the stimuli given therein are returned (varm) and vwghts contains an estimate for

the ratio of the variances of the parameter for the stimuli indicated in vvector. cbeta then

contains the corresponding parameter estimates and thus is a vector of corresponding length

in each voxel.

14

Value

object with class attributes ”fmrispm” and ”fmridata”

beta estimated parameters

cbeta estimated contrast of parameters

var estimated variance of the contrast of parameters.

varm covariance matrix of the parameters given by vvector

res residuals of the estimated linear model

arfactor estimated autocorrelation parameter

scorr spatial correlation of data

weights ratio of voxel dimensions

vwghts ratio of estimated variances for the stimululi given by vvector

rxyz array of smoothness from estimated correlation for each voxel in resel space

(for analysis without smoothing)

hrf expected BOLD response for contrast

Note

vvector is intended to be used for delay of the HRF using its first derivative. Do not mix

with the contrast argument, since unexpected side effects may occur. Look out for updates

of this package.

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

References

Worsley, K.J. (2005). Spatial smoothing of autocorrelations to control the degrees of freedom

in fMRI analysis. NeuroImage, 26:635-641.

Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C. (2002).

A general statistical analysis for fMRI data. NeuroImage, 15:1-15.

See Also

fmri.design, fmri.stimulus

15

Examples

Example 1

data <- list(ttt=array(rnorm(32*32*32*107),c(32,32,32,107)),

mask=array(1,c(32,32,32)))

class(data) <- "fmri.data"

hrf <- fmri.stimulus(107, c(18, 48, 78), 15, 2)

z <- fmri.design(hrf,2)

model <- fmri.lm(data,z,keep="all")

plot(data$ttt[16,16,16,])

lines(data$ttt[16,16,16,] - model$res[16,16,16,],col=2)

5 Structure Adaptive Smoothing

The parameter map is smoothed with

spmsmooth <- fmri.smooth(spm, hmax=hmax)

where spm is the result of the fmri.lm() function. hmax is the maximum bandwidth for the

smoothing algorithm. For lkern=”Gaussian” the bandwidth is given in units of FWHM, for any

other localization kernel the unit is voxel. hmax should be chosen as the size of the expected

maximum size of the activation areas. As adaptive smoothing automatically adapts to different

sizes and shapes of the activation areas, oversmoothing is not expected.

In [7] the use of a spatial adaptive smoothing procedure derived from the Propagation-Separation

approach [5] has been proposed in this context. The approach focuses, for each voxel i, on si-

multaneously identifying a region where the unknown parameter γ is approximately constant and

to obtain an optimal estimate γ̂i employing this structural information. This is achieved by an

iterative procedure. Local smoothing is restricted to local vicinities of each voxel, that are charac-

terized by a weighting scheme. Smoothing and characterization of local vicinities are alternated.

Weights for a pair of voxels i and j are constructed as a product of kernel weights Kloc(δ(i, j)/h),

depending on the distance δ(i, j) between the two voxels and a bandwidth h, and a factor reflecting

the difference of the estimates γ̂i and γ̂j obtained within the last iteration. The bandwidth h is

increased with iterations up to a maximal bandwidth hmax.

The name Propagation-Separation is a synonym for the two main properties of this algorithm. In

case of a completely homogeneous array Γ̃, that is Eγ̃ ≡ Const., the algorithm delivers essentially

the same result as a nonadaptive kernel smoother employing the bandwidth hmax. In this case the

procedure selects the best of a sequence of almost nonadaptive estimates, that is, it propagates to

the one with maximum bandwidth. Separation means that as soon as within one iteration step

significant differences of γ̂i and γ̂j are observed the corresponding weight is decreased to zero and

the information from voxel j is no longer used to estimate γi. Voxels i and j belong to different

regions of homogeneity and are therefore separated. As a consequence smoothing is restricted to

16

regions with approximately constant values of γ, bias at the border of such regions is avoided and

the spatial structure of activated regions is preserved.

For a formal description of this algorithm, a discussion of its properties and theoretical results we

refer to [5] and [7]. Numerical complexity, as well as smoothness within homogeneous regions is

controlled by the maximum bandwidth hmax.

If the argument object contains a parameter vector for each voxel (for example to include latency

see section 4 how to do) these will be smoothed according to their estimated variance ratio, see [7]

for details on the smoothing procedure.

fmri.smooth Smoothing Statistical Parametric Maps

Description

Perform the adaptive weights smoothing procedure

Usage

fmri.smooth(spm, hmax = 4, adaptive=TRUE,

lkern="Triangle", skern="Triangle")

Arguments

spm object of class fmrispm

hmax maximum bandwidth to smooth

adaptive logical. TRUE (default) for adaptive smoothing

lkern lkern specifies the location kernel. Defaults to ”Triangle”, other choices are

”Gaussian”, ”Quadratic”, ”Cubic” and ”Uniform”. Note that the location

kernel is applied to (x-x j)^2/h^2, i.e. the use of ”Triangle” corresponds to

the Epanechnicov kernel in nonparametric kernel regression.

skern skern specifies the kernel for the statistical penalty. Defaults to ”Trian-

gle”, the alternative is ”Exp”. lkern="Triangle" allows for much faster

computation (saves up to 50%).

Details

This function performs the smoothing on the Statistical Parametric Map spm.

hmax is the (maximal) bandwidth used in the last iteration. Choose adaptive as FALSE for non

adaptive smoothing. lkern can be used for specifying the localization kernel. For comparison

17

with non adaptive methods use ”Gaussian” (hmax given in FWHM), for better adaptation use

”Triangle” (default, hmax given in voxel). skern can be used for specifying the kernel for the

statistical penalty.

The function handles zero variances by assigning a large value (1e20) to these variances.

Value

object with class attributes ”fmrispm” and ”fmridata”

cbeta smoothed parameter estimate

var variance of the parameter

hmax maximum bandwidth used

rxyz smoothness in resel space. all directions

rxyz0 smoothness in resel space as would be achieved by a Gaussian filter with the

same bandwidth. all directions

scorr spatial correlation of original data

weights ratio of voxel dimensions

vwghts ratio of estimated variances for the stimuli given by vvector

hrf Expected BOLD response for the specified effect

Author(s)

Joerg Polzehl polzehl@wias-berlin.de, Karsten Tabelow tabelow@wias-berlin.de

References

Tabelow, K., Polzehl, J., Voss, H.U., and Spokoiny, V. (2005). Analysing fMRI experiments

with structure adaptive smoothing procedures, NeuroImage, accepted (2006).

Polzehl, J. and Spokoiny, V. (2006). Propagation-Separation Approach for Local Likelihood

Estimation, Probab. Theory Relat. Fields 135, 335-362.

Examples

Not run: fmri.smooth(spm, hmax = 4, lkern = "Gaussian")

6 Signal detection

Smoothing leads to variance reduction and thus signal enhancement. It leaves us with three

dimensional arrays Γ̂, Ŝ containing the estimated effects γ̂i = cT β̂i and their estimated standard

18

deviations ŝi = (cT Var β̂ic)
1/2. The voxelwise quotient θ̂i = γ̂i/ŝi of both arrays forms a statistical

parametric map (SPM) Θ̂. The SPM as well as a map of p-values are generated by

pvalue <- fmri.pvalue(spmsmooth)

Under the hypothesis, that is, in absence of activation this SPM behaves approximately like a

Gaussian Random Field, see [7]. We therefore use the theory of Gaussian Random Fields to assign

appropriate p-values as a prerequisite for signal detection. Such p-values can be defined [10] as

pi =
3
∑

d=0

Rd(V (rx, ry, rz))ρd(θ̂i) (3)

where Rd(V) is the resel count of the search volume V and ρd(θ̂i) is the EC density depending

only on the parameter θ̂i. rx, ry, rz denotes the effective FWHM bandwidths that measure the

smoothness (in resel space see [10]) of the random field generated by a Gaussian filter that employs

the bandwidth from the last iteration of the PS procedure [7]. It has been given in [10] that

R0(V) = 1,

R1(V) = (x − 1)rx + (y − 1)ry + (z − 1)rz,

R2(V) = (x − 1)(y − 1)rxry + (y − 1)(z − 1)ryrz + (x − 1)(z − 1)rxrz ,

R3(V) = (x − 1)(y − 1)(z − 1)rxryrz (4)

and

ρ0(z) =

∫

∞

z

1

(2π)0.5
exp(−u2/2)du,

ρ1(z) =
(4 ln 2)

1

2

(2π)
exp(−t2/2) ,

ρ2(z) =
(4 ln 2)

(2π)
3

2

exp(−t2/2) t,

ρ3(z) =
(4 ln 2)

3

2

(2π)2
exp(−t2/2) (t2 − 1) (5)

A signal will be detected in all voxels where the observed p-values is less or equal to a specified

threshold.

Finally we provide a statistical analysis including unknown latency of the hemodynamic response

function. If spmsmooth contains a vector (see fmri.lm() and fmri.smooth()), a χ2 statistic is

calculated from the first two parameters and used for p-value calculation. If delta is given, a cone

statistics is used [11].

The parameter mode allows for different kinds of p-value calculation. ”basic” corresponds to a

global definition based on the amount of smoothness achieved by a equivalent Gaussian filter. The

propagation condition ensures, that under the hypothesis Θ̂ = 0 the adaptive smoothing perform

like a non adaptive filter with the same kernel function. ”local” corresponds to a more conservative

setting, where the p-values are derived from the estimated local resel counts that has been achieved

by the adaptive smoothing. ”global” takes a global median of these resel counts for calculation.

19

fmri.pvalue P-values

Description

Determine p-values.

Usage

fmri.pvalue(spm, mode="basic", delta=NULL)

Arguments

spm fmrispm object

mode type of pvalue definition

delta physically meaningful range of latency for HRF

Details

If only a contrast is given in spm, we simply use a t-statistic and define p-values according

to random field theory for the resulting gaussian field (sufficiently large number of df - see

ref.). If spm is a vector of length larger than one for each voxel, a chisq field is calculated and

evaluated (see Worsley and Taylor (2006)). If delta is given, a cone statistics is used.

The parameter mode allows for different kinds of p-value calculation. ”basic” corresponds to

a global definition of the resel counts based on the amount of smoothness achieved by an

equivalent Gaussian filter. The propagation condition ensures, that under the hypothesis

Θ̂ = 0

adaptive smoothing performs like a non adaptive filter with the same kernel function which

justifies this approach. ”local” corresponds to a more conservative setting, where the p-value

is derived from the estimated local resel counts that has been achieved by adaptive smoothing.

In contrast to ”basic”, ”global” takes a global median to adjust for the randomness of the

weighting scheme generated by adaptive smoothing. ”global” and ”local” are more conservative

than ”basic”, that is, they generate sligthly larger p-values.

Value

Object with class attributes ”fmripvalue” and ”fmridata”

pvalue p-value. use with plot for thresholding.

20

weights voxelsize ratio

dim data dimension

hrf expected BOLD response for contrast (single stimulus only)

Note

Unexpected side effects may occur if spm does not meet the requirements, especially if a

parameter estimate vector of length greater than 2 through argument vvector in fmri.lm has

beeen produced for every voxel.

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

References

Tabelow, K., Polzehl, J., Voss, H.U., and Spokoiny, V. (2005). Analysing fMRI experiments

with structure adaptive smoothing procedures, NeuroImage, accepted (2006).

Worsley, K.J., and Taylor, J.E., Detecting fMRI activation allowing for unknown latency of

the hemodynamic response, NeuroImage 29:649-654 (2006).

See Also

fmri.smooth, plot.fmridata

Examples

Not run: fmri.pvalue(smoothresult)

7 Plot the results

Results can be displayed by a generic plot function

plot(object,anatomic,device="jpeg",file="result.jpeg")

object is an object of class ”fmridata” (and ”fmrispm” or ”fmripvalue”) as returned by fmri.pvalue(),

fmri.smooth(), fmri.lm(), read.ANALYZE() or read.AFNI(). anatomic is an anatomic underlay of

the same dimension as the functional data. The argument type=”3d” provides an interactive dis-

play to produce 3 dimensional illustrations (requires R-package tkrplot) on the screen. The default

for type is ”slice”, which can create output to the screen and image files.

We also provide generic functions summary() and print() for objects with class attribute ”fmri-

data”.

21

plot.fmridata I/O functions

Description

Visualize fMRI data and (intermediate) results.

Usage

plot.fmridata(x, anatomic = NULL, maxpvalue = 0.05,

spm = TRUE, pos = c(-1, -1, -1), type = "slice",

device = "X11", file = "plot.png",...)

Arguments

x object of class ”fmripvalue”, ”fmrispm” or ”fmridata”

anatomic overlay of same dimension as the functional data

maxpvalue maximum p-value for thresholding

spm logical. if class is ”fmrispm” decide whether to plot the t-statistics for the

estimated effect (spm=TRUE) or the estimated effect itself (spm=FALSE).

pos voxel to be marked on output

type string. ”slice” for slicewise view and ”3d” for 3d view.

device output device if type is slice. ”png”, ”jpeg”, ”ppm”, default is ”X11”

file name of output file if device is not ”X11”

... additional arguments for plot

Details

Provides a sliceswise view of ”fmridata” objects with anatomic overlay (if appropriate, that is

for class ”fmripvalue”). For objects of class ”fmrispm” it plots the t-statistics for the estimated

effects if spm is TRUE, or the estimated effect otherwise. For objects of class ”fmridata” only a

plot of the data slices itself is produced. If device is specified as ”png”, ”jpeg”, ”ppm” output

is done to a file. A grey/color scale is provided in the remaining space.

If type is ”3d” a 3 dimensional interactive view opens. Sliders to move in the data cube are

given (”x”, ”y”, ”z”, and ”t” if class is ”fmridata” only). Time series are shown if available.

For objects of class ”fmrispm” a slider is created to remove information for voxels with smaller

signals than a cut-off value from the plot. Use pvalues for statistical evaluation. If spm is TRUE

the estimated BOLD response together with a confidence interval corresponding to maxpvalue

is drawn. For objects of class ”fmripvalue” the pvalues with overlay are shown.

22

Value

If ’type’ is ”3d” the Tk-object is returned. (Remove the diplay with tkdestroy(object))

Note

3 dimensional plotting requires the tkrplot package.

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

See Also

fmri.pvalue

Examples

Not run: plot(pvalue)

print.fmridata I/O functions

Description

’print’ method for class ’”fmridata”’.

Usage

print.fmridata(x, ...)

Arguments

x an object of class fmridata, usually, a result of a call to fmri.lm, fmri.smooth,

fmri.pvalue, read.AFNI, or read.ANALYZE.

... further arguments passed to or from other methods.

Details

The method tries to print information on data, like data dimension, voxel size, value range.

23

Value

none

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

See Also

summary.fmridata

Examples

Not run: print(data)

summary.fmridata I/O functions

Description

’summary’ method for class ’”fmridata”’.

Usage

summary.fmridata(object, ...)

Arguments

object an object of class fmridata, usually, a result of a call to fmri.lm, fmri.smooth,

fmri.pvalue, read.AFNI, or read.ANALYZE.

... further arguments passed to or from other methods.

Details

The method tries to print information on data, like data dimension, voxel size, value range.

24

Value

A list with the following elements:

dim data dimension

delta voxel dimension, if available

values value range

z design matrix

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

See Also

print.fmridata

Examples

Not run: summary(data)

8 Writing the results to files

Finally we provide two functions to write out data to standard medical image formats such as

HEAD/BRIK and ANALYZE.

write.AFNI("afnitest", array(as.integer(65526*runif(10*10*10*20)),

c(10,10,10,20)), c("signal"), note="random data",

origin=c(0,0,0), delta=c(4,4,5), idcode="unique ID")

write.ANALYZE(array(as.integer(65526*runif(10*10*10*20)),c(10,10,10,20)),

list(pixdim=c(4,4,4,5)),

file="analyzetest")

One can provide some basic header information, in case of ANALYZE files as a list with several

elements (see documentation for syntax). Any datacube created during the analysis can be written.

25

write.AFNI I/O functions

Description

Write BRIK/HEAD files.

Usage

write.AFNI(file, ttt, label, note = "", origin = c(0, 0, 0),

delta = c(4, 4, 4), idcode = "WIAS_noid")

Arguments

file name of the file

ttt datacube

label labels (BRICK LABS)

note notes on data (HISTORY NOTE)

origin origin of datacube (ORIGIN)

delta voxel dimensions (DELTA)

idcode idcode of data (IDCODE STRING)

Details

Write out BRIK/HEAD files as required by AFNI. Most arguments correspond to entries in

the HEAD file.

Value

Nothing is returned.

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

See Also

read.AFNI,write.ANALYZE

26

Examples

write.AFNI("afnifile", array(as.integer(65526*runif(10*10*10*20)),

c(10,10,10,20)), c("signal"), note="random data",

origin=c(0,0,0), delta=c(4,4,5), idcode="unique ID")

write.ANALYZE I/O Functions

Description

Write a 4 dimensional datacube in ANALYZE file format.

Usage

write.ANALYZE(ttt, header=NULL, file)

Arguments

ttt 4 dimensional datacube

header header information

file file name

Details

Writes the datacube ttt to a file named file in ANLYZE file format. header is a list that

contains the header information as documented by the Mayo Foundation. We give here a short

summary. If a value is not provided, it will be tried to fill it with reasonable defaults, but do

not expect fine results, if the entry has a special important meaning (h.i. pixdim).

[1] datatype1 – 10 byte character [2] dbname – 18 byte character

[3] extents – integer [4] sessionerror – integer

[5] regular – character [6] hkey – character

[7] dimension – 8 integers, dimensions ... [8] unused – 7 integers

[9] datatype – integer, datatype usually ”4” [10] bitpix – integer

[11] dimun0 – integer [12] pixdim – 8 floats, voxel dimensions ...

[13] voxoffset – float [14] funused – 3 floats

[15] calmax – float [16] calmin – float

[17] compressed – float [18] verified – float

[19] glmax – integer [20] glmin – integer

[21] describ – 80 byte character [22] auxfile – 24 byte character

27

[23] orient – character [24] originator – 5 integers

[25] generated – 10 byte character [26] scannum – 10 byte character

[27] patientid – 10 byte character [28] expdate – 10 byte character

[29] exptime – 10 byte character [30] histun0 – 3 byte character

[31] views – integer [32] voladded – integer

[33] startfield – integer [34] fieldskip – integer

[35] omax – integer [36] omin – integer

[37] smax – integer [38] smin – integer

See ANALYZE documentation for details.

Value

Nothing is returned.

Author(s)

Karsten Tabelow tabelow@wias-berlin.de

See Also

read.ANALYZE, write.AFNI

Examples

Example 1

write.ANALYZE(array(as.integer(65526*runif(10*10*10*20)),c(10,10,10,20)),

file="analyzefile")

References

[1] Biomedical Imaging Resource. Analyze Program. Mayo Foundation, 2001.

[2] R. W. Cox. Afni: Software for analysis and visualization of functional magnetic resonance

neuroimages. Computers and Biomed. Res., 29:162–173, 1996.

[3] N. Lange. Statistical approaches to human brain mapping by functional magnetic resonance

imaging. Stat. in Medicine, 15:389–428, 1996.

[4] N. Lange and S.L. Zeger. Non-linear Fourier time series analysis for human brain mapping

by functional magnetic resonance imaging. J. Roy. Statist. Soc. Ser. C, 46:1–29, 1997.

28

[5] J. Polzehl and V. Spokoiny. Propagation-separation approach for local likelihood estima-

tion. Probab. Theory and Relat. Fields, in print: http://dx.doi.org/10.1007/s00440-005-0464-

1, 2005.

[6] R Development Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.

[7] K. Tabelow, J. Polzehl, H. U. Voss, and V. Spokoiny. Analyzing fMRI experiments with

structural adaptive smoothing procedures. NeuroImage, accepted, 2006.

[8] K.J. Worsley. Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI

analysis. NeuroImage, 26:635–641, 2005.

[9] K.J. Worsley, C. Liao, J. A. D. Aston, V. Petre, G.H. Duncan, F. Morales, and A.C. Evans.

A general statistical analysis for fMRI data. NeuroImage, 15:1–15, 2002.

[10] K.J. Worsley, S. Marrett, P. Neelin, K.J. Friston, and A.C. Evans. A unified statistical

approach for determing significant signals in images of cerebral activation. Human Brain

Mapping, 4:58–73, 1996.

[11] K.J. Worsley and J.E. Taylor. Detecting fMRI activation allowing for unknown latency of the

hemodynamic response. Neuroimage, 29:649–654, 2006.

29

